Migration of single adherent cells is frequently observed in the developing and adult organism and has been the subject of many studies. Yet, while elegant work has elucidated molecular and mechanical cues affecting motion dynamics on a flat surface, it remains less clear how cells migrate in a 3D setting. In this review, we explore the changing parameters encountered by cells navigating through a 3D microenvironment compared to cells crawling on top of a 2D surface, and how these differences alter subcellular structures required for propulsion. We further discuss how such changes at the micro-scale impact motion pattern at the macro-scale.