Abstract:In this paper, motivated by modelling currency exchange markets with matrix-valued stochastic processes, matrix-valued stochastic differential equations (SDEs) are formulated. This is done based on the matrix trace, as for the purpose of modelling currency exchange markets. To be more precise, we set up a Hilbert space structure for n × n square matrices via the trace of the Hadamard product of two matrices. With the help of this framework, one can then define stochastic integral of Itô type and Itô SDEs. Two … Show more
The path independence of additive functionals for SDEs driven by the G-Brownian motion is characterized by nonlinear PDEs. The main result generalizes the existing ones for SDEs driven by the standard Brownian motion.
The path independence of additive functionals for SDEs driven by the G-Brownian motion is characterized by nonlinear PDEs. The main result generalizes the existing ones for SDEs driven by the standard Brownian motion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.