The technology of flexible cooking surfaces applied to domestic induction heating (IH) appliances offers several advantages that improve the experience of the users, not only because the safety or cleanness, but also due to the fast heating and flexibility. These cooktops have more challenging design requirements because of different mains connections, efficiency requirements, electromagnetic compatibility (EMC) standards, control complexity, and cost. In previous works, the use of a front-end power factor corrector (PFC) rectifier has been proposed to overcome these restrictions. In order to get a cost-effective implementation, this paper proposes the use of a front-end PFC stage and a matrix resonant inverter, which features zero voltage switching (ZVS), to achieve a reduced number of power devices, and get a high performance and reduced power losses in the converter. Finally, an experimental prototype with four outputs of 3.6 kW has been implemented to prove the feasibility of this proposal.