Coordination numbers and geometries form a theoretical framework for understanding and predicting materials properties. Algorithms to determine coordination numbers automatically are increasingly used for machine learning and automatic structural analysis. In this work, we introduce MaterialsCoord, a benchmark suite containing 56 experimentally-derived crystal structures (spanning elements, binaries, and ternary compounds) and their corresponding coordination environments as described in the research literature. We also describe CrystalNN, a novel algorithm for determining near neighbors. We compare CrystalNN against 7 existing near-neighbor algorithms on the MaterialsCoord benchmark, finding CrystalNN to perform similarly to several well-established algorithms. For each algorithm, we also assess computational demand and sensitivity towards small perturbations that mimic thermal motion. Finally, we 1 investigate the similarity between bonding algorithms when applied to the Materials Project database. We expect that this work will aid the development of coordination prediction algorithms as well as improve structural descriptors for machine learning and other applications.