“…By a standard localization argument it suffices to considerthe case O = R d + . The case γ ∈ (−1, p−1)is already considered in [53, Theorem 2.1 & Corollary 4.9] (also see[53, Theorem 4.4]), so from now on we will assume γ ∈ (p − 1, 2p − 1).Let us writeM := W ℓ,q (R, v; L p (R d + , w γ ; X)) ∩ L q (R, v; W k,p (R d + , w γ ; X)) v; L p (R d−1 ; X)) ∩ L q (R, v; B k− 1+γ p p,p (R d−1 ; X)). By Theorem 3.18, Proposition 7.3, Corollary 3.4 and [56, Propositions 5.5 & 5.6],M ֒→ H ℓ(1− 1 k ),q (R; v; [L p (R d + , w γ ; X), W k,p (R d + , w γ ; X)] 1 k ) ֒→ H ℓ(1− 1 k ),q (R; v; [H −1,p (R d + , w γ−p ; X), W k−1,p (R d + , w γ−p ; X)] 1 k ) = H ℓ(1− 1 k ),q (R; v; L p (R d + , w γ−p ; X)).Therefore, once applying Corollary 3.4,M ֒→ H ℓ(1− 1 k ),q (R; v; L p (R d + , w γ−p ; X)) ∩ L q (R, v; W k−1,p (R d + , w γ−p ; X)),(7.6) which reduces the problem to the A p -weight setting.…”