By quenched-randomly mixing local units of different spatial dimensionalities, we have studied Ising spin-glass systems on hierarchical lattices continuously in dimensionalities 1 ≤ d ≤ 3. The global phase diagram in temperature, antiferromagnetic bond concentration, and spatial dimensionality is calculated. We find that, as dimension is lowered, the spin-glass phase disappears to zero temperature at the lower-critical dimension dc = 2.431. Our system being a physically realizable system, this sets an upper limit to the lower-critical dimension in general for the Ising spin-glass phase. As dimension is lowered towards dc, the spin-glass critical temperature continuously goes to zero, but the spin-glass chaos fully sustains to the brink of the disappearance of the spin-glass phase. The Lyapunov exponent, measuring the strength of chaos, is thus largely unaffected by the approach to dc and shows a discontinuity to zero at dc.