All Days 2018
DOI: 10.2118/195664-ms
|View full text |Cite
|
Sign up to set email alerts
|

Maximizing Oil Recovery in a Naturally Fractured Carbonate Reservoir using Computational Intelligence Based on Particle Swarm Optimization

Abstract: A major challenge in carbonate reservoirs is the highly-fractured nature of the rock. The flow rate may be high or low depending on the targeted fracture clusters. In addition, it is possible that flow rates vary from one region of the reservoir to another. Smart wells furnished with smart completion strategy presents great prospects to produce such reservoirs intelligently, thereby, helping to deal with heterogeneities rather smartly. It is established that early water break-through occurs when multi-lateral … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0

Year Published

2019
2019
2022
2022

Publication Types

Select...
6

Relationship

2
4

Authors

Journals

citations
Cited by 11 publications
(2 citation statements)
references
References 38 publications
0
2
0
Order By: Relevance
“…Machine learning and artificial intelligence is making great progress in the oil and gas industry, with various researchers investigating advance applications pertaining to complex/heterogenous systems (Konoshonkin et al, 2020;Ma et al, 2018;Mohaghegh et al, 1994;wu zy and liu, 2018;Zhang et al, 2005Zhang et al, , 2012 (Elkatatny et al, 2016;Tariq, 2018;Tariq et al, 2021Tariq et al, , 2020cTariq et al, , 2020dTariq et al, , 2019aTariq et al, , 2019bTariq and Mahmoud, 2019). A wide range of ML algorithms have been employed to develop models/correlations for estimating various parameters related to hydrocarbons development (Ahmadi et al, 2014;Anifowose et al, 2015;da Silva et al, 2005;Janjua et al, 2016;Khan et al, 2019aKhan et al, , 2019bKhan et al, , 2018bKhan et al, , 2018aKhan et al, , 2018cLi et al, 2020;Tariq et al, 2018Tariq et al, , 2016Tohidi-Hosseini et al, 2016). Lithology determination from well logs utilizing neural networks has been the subject for various publications (Amir et al, 2020;Rogers et al, 1992).…”
Section: Methodsmentioning
confidence: 99%
“…Machine learning and artificial intelligence is making great progress in the oil and gas industry, with various researchers investigating advance applications pertaining to complex/heterogenous systems (Konoshonkin et al, 2020;Ma et al, 2018;Mohaghegh et al, 1994;wu zy and liu, 2018;Zhang et al, 2005Zhang et al, , 2012 (Elkatatny et al, 2016;Tariq, 2018;Tariq et al, 2021Tariq et al, , 2020cTariq et al, , 2020dTariq et al, , 2019aTariq et al, , 2019bTariq and Mahmoud, 2019). A wide range of ML algorithms have been employed to develop models/correlations for estimating various parameters related to hydrocarbons development (Ahmadi et al, 2014;Anifowose et al, 2015;da Silva et al, 2005;Janjua et al, 2016;Khan et al, 2019aKhan et al, , 2019bKhan et al, , 2018bKhan et al, , 2018aKhan et al, , 2018cLi et al, 2020;Tariq et al, 2018Tariq et al, , 2016Tohidi-Hosseini et al, 2016). Lithology determination from well logs utilizing neural networks has been the subject for various publications (Amir et al, 2020;Rogers et al, 1992).…”
Section: Methodsmentioning
confidence: 99%
“…Machine learning is making great progress in the oil and gas industry, with various researchers investigating advance applications pertaining to complex/heterogenous systems (Konoshonkin et al, 2020;Ma et al, 2018;Mohaghegh et al, 1994;wu zy and liu, 2018;Zhang et al, 2005Zhang et al, , 2012 (Elkatatny et al, 2016;Tariq, 2018;Tariq et al, 2021Tariq et al, , 2019aTariq et al, , 2019bZeeshan Tariq et al, 2020b, 2020cTariq and Mahmoud, 2019). A wide range of AI algorithms have been employed to develop models/correlations for estimating various parameters related to hydrocarbons development (Ahmadi et al, 2014;Anifowose et al, 2015;da Silva et al, 2005;Janjua et al, 2016;Khan et al, 2019aKhan et al, , 2019bKhan et al, , 2018bKhan et al, , 2018aKhan et al, , 2018cLi et al, 2020;Tariq et al, 2018Tariq et al, , 2016Tohidi-Hosseini et al, 2016). Lithology determination from well logs utilizing neural networks has been the subject for various publications (Amir et al, 2020;Rogers et al, 1992).…”
Section: Introductionmentioning
confidence: 99%