This article focuses on determining the optimum structure for a hybrid generation and storage system designed to power a single-family housing estate, taking into account the different number of electric vehicles in use and an assumed level of self-consumption of the generated energy. In terms of generation, two generation sections—wind and solar—and a lithium-ion container storage system will be taken into account. With regards to energy consumption, household load curves, determined on the basis of the tariff for residential consumers and modified by a random disturbance, will be taken into account, as well as the processes for charging electric cars with AC chargers, with power outputs ranging between 3.6 and 22 kW. Analyses were carried out for three locations in Poland—the Baltic Sea coast (good wind conditions), the Lublin Uplands (the best insolation in Poland) and the Carpathian foothills (poor wind and insolation conditions). The mathematical and numerical model of the system and the MOPSO (multiobjective particle swarm optimisation) algorithm were implemented in the Matlab environment. The results include Pareto fronts (three optimisation criteria: minimisation of energy storage capacity, minimisation of energy exchanged with the power grid and maximisation of the self-consumption rate) for the indicated locations and three electromobility development scenarios with determined NPVs (net present values) for a 20-year lifetime. The detailed results relate to the inclusion of an additional expert criterion in the form of a coupled payback period of no more than 10 years, a maximum NPV in the last year of operation and a self-consumption rate of at least 80%. The economic calculations take into account the decrease in PV installation capacity as a function of the year of operation, as well as changes in electricity and petrol prices and variations in energy prices at purchase and sale.