The efficacy of short wave ultraviolet light (UV-C) as a non-thermal process for liquid egg products (LEP) was investigated. Nonpathogenic Escherichia coli strain (ATCC 8739), which shows lower sensitivity to UV-C light than E. coli O157:H7 and Salmonella typhimurium, was chosen as a target microorganism. The inactivation of UV resistant strain of E. coli in LEP was examined by evaluating the effects of depth of liquid food medium (0.5, 0.3 and 0.153 cm), UV light intensity (1.314, 0.709 and 0.383 mW/cm 2 ) and exposure time (0, 5, 10, and 20 min) by using a collimated beam apparatus. The best reduction (>2-log) was achieved in liquid egg white (LEW) when the fluid depth and UV intensity were 0.153 cm and 1.314 mW/cm 2 , respectively. Maximum inactivation was 0.675-log CFU/ml in liquid egg yolk (LEY) and 0.316-log CFU/ml in liquid whole egg (LWE) at the same conditions. The kinetics of UV inactivation of E. coli in LEP was nonlinear. Our results emphasize that UV-C radiation can be used as a pre-treatment process or combined with mild heat treatment to reduce the adverse effects of thermal pasteurization of LEP.