In this article, we consider a two-phase tandem queueing model with a second optional service. In this model, the service is done by two phases. The first phase of service is essential for all customers and after the completion of the first phase of service, any customer receives the second phase of service with probability , or leaves the system with probability 1 − . Also, there are two heterogeneous servers which work independently, one of them providing the first phase of service and the other a second phase of service. In this model, our main purpose is to estimate the parameters of the model, traffic intensity, and mean system size, in the steady state, via maximum likelihood and Bayesian methods. Furthermore, we find asymptotic confidence intervals for mean system size. Finally, by a simulation study, we compute the confidence levels and mean length for asymptotic confidence intervals of mean system size with a nominal level 0.95.