Пусть $f_\infty$ - росток в точке $\infty$ некоторой алгебраической функции $f$ степени $m+1$. Пусть $Q_{n,j}$, $j=0,…,m$, - полиномы Эрмита-Паде первого типа порядка $n\in\mathbb N$, построенные по набору ростков $[1, f_\infty, f_\infty^2,…,f_\infty^m]$. В настоящей статье мы изучаем асимптотические свойства дискриминантов, построенных по указанным полиномам Эрмита-Паде, т.е. дискриминантов $D_n(z)$ полиномов $Q_{n,m}(z)w^m+Q_{n,m-1}(z)w^{m-1}+…+Q_{n,0}(z)$. Мы находим их слабую асимптотику, а также сравнительную асимптотику с полиномом $Q_{n,m}^{2m-2}$. Кроме того, мы уточняем слабую асимптотику $D_n$ в точках ветвления исходной алгебраической функции $f$ и применяем полученные результаты к востребованной в прикладных задачах проблеме численного нахождения точек ветвления $f$ по ее заданному ростку $f_\infty$.
Библиография: 49 названий.