The rapid advancement of commercial wearable sensing technologies provides an unprecedented opportunity to gather information that improves warfighter performance during military activities and to detect the onset of illness (such as COVID‐19) through surveillance. However, the promise of improved performance and illness prevention through these technologies remains unfulfilled because of the complexity of guaranteeing that technology development outside of the standard military acquisition cycle will meet military requirements. The key to meeting this challenge is to facilitate coordination among R&D efforts, commercially developed products, and military acquisition strategies. To address this, we developed an MBSE architecture and methodology for validating independently developed wearable system designs against military end‐user needs. This methodology includes developing a conceptual framework, a model library, and a capability needs matrix that maps defense mission characteristics to physiological states and product design implementations. This architecture allows military stakeholders to determine where capability gaps or opportunities for wider application of commercial technologies exist, thus providing a bridge between externally developed wearable sensing technologies and military acquisition strategies.