Accelerated magnetic resonance imaging (MRI) has played an essential role in reducing data acquisition time for MRI. Acceleration can be achieved by acquiring fewer data points in k-space, which results in various artifacts in the image domain. Conventional reconstruction methods have resolved the artifacts by utilizing multi-coil information, but with limited robustness. Recently, numerous deep learning-based reconstruction methods have been developed, enabling outstanding reconstruction performances with higher acceleration. Advances in hardware and developments of specialized network architectures have produced such achievements. Besides, MRI signals contain various redundant information including multi-coil redundancy, multi-contrast redundancy, and spatiotemporal redundancy. Utilization of the redundant information combined with deep learning approaches allow not only higher acceleration, but also well-preserved details in the reconstructed images. Consequently, this review paper introduces the basic concepts of deep learning and conventional accelerated MRI reconstruction methods, followed by review of recent deep learning-based reconstruction methods that exploit various redundancies. Lastly, the paper concludes by discussing the challenges, limitations, and potential directions of future developments.