2017
DOI: 10.1142/s0219498817501833
|View full text |Cite
|
Sign up to set email alerts
|

McCoy property and nilpotent elements of skew generalized power series rings

Abstract: Let [Formula: see text] be a ring, [Formula: see text] a strictly ordered monoid and [Formula: see text] a monoid homomorphism. The skew generalized power series ring [Formula: see text] is a common generalization of (skew) polynomial rings, (skew) power series rings, (skew) Laurent polynomial rings, (skew) group rings, and Mal’cev–Neumann Laurent series rings. In this paper, we consider the problem of determining when [Formula: see text] is nilpotent in [Formula: see text]. We study various annihilator proper… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2020
2020
2024
2024

Publication Types

Select...
4

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
references
References 53 publications
0
0
0
Order By: Relevance