We present a new class of cluster point process models, which we call determinantal shot noise Cox processes (DSNCP), with repulsion between cluster centres. They are the special case of generalized shot noise Cox processes where the cluster centres are determinantal point processes. We establish various moment results and describe how these can be used to easily estimate unknown parameters in two particularly tractable cases, namely, when the offspring density is isotropic Gaussian and the kernel of the determinantal point process of cluster centres is Gaussian or like in a scaled Ginibre point process. Through a simulation study and the analysis of a real point pattern data set, we see that when modelling clustered point patterns, a much lower intensity of cluster centres may be needed in DSNCP models as compared to shot noise Cox processes.