Hormones are effective in regulating plant metabolism and, therefore, are often used in plant cell culture to increase the yield of target products. This study investigated the effects of hormones on the growth and anthocyanin biosynthesis of suspension‐cultured red Cyclocarya paliurus cells. Additionally, the mechanism by which gibberellin induces anthocyanin biosynthesis was explored through multi‐omics integrated analysis and the assay of the dynamic changes in signaling molecule concentration. The results showed that the total anthocyanin content and yield of suspension‐cultured cells, when induced by 1.0 mg L⁻¹ Gibberellin A3 (GA3), experienced increases of 1.92‐ and 1.83‐fold, respectively. The application of exogenous GA3 activated the synthesis and transduction of four signaling molecules, that is, nitric oxide (NO), hydrogen peroxide (H2O2), salicylic acid (SA), and jasmonic acid (JA), in the cells and altered the expression patterns of transcription factors. The altered expression of transcription factors upregulated the expression of anthocyanin biosynthetic genes such as anthocyanin‐3‐O‐glucosyl transferase and leucoanthocyanidin dioxygenase, while downregulated the expression of anthocyanin reductase and flavonoid 3′,5′,‐hydroxylase, which activated the anthocyanin biosynthesis pathway, ultimately leading to a significant increase in anthocyanin biosynthesis. This research work establishes a foundation for further research on the role of hormones in regulating anthocyanin biosynthesis in suspension‐cultured plant cells.