MDGCL: Graph Contrastive Learning Framework with Multiple Graph Diffusion Methods
Yuqiang Li,
Yi Zhang,
Chun Liu
Abstract:In recent years, some classical graph contrastive learning(GCL) frameworks have been proposed to address the problem of sparse labeling of graph data in the real world. However, in node classification tasks, there are two obvious problems with existing GCL frameworks: first, the stochastic augmentation methods they adopt lose a lot of semantic information; second, the local–local contrasting mode selected by most frameworks ignores the global semantic information of the original graph, which limits the node cl… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.