For the monitoring and processing of network data, wireless systems are widely used in many industrial applications. With the assistance of wireless sensor networks (WSNs) and the Internet of Things (IoT), smart grids are being explored in many distributed communication systems. They collect data from the surrounding environment and transmit it with the support of a multi-hop system. However, there is still a significant research gap in energy management for IoT devices and smart sensors. Many solutions have been proposed by researchers to cope with efficient routing schemes in smart grid applications. But, reducing energy holes and offering intelligent decisions for forwarding data are remain major problems. Moreover, the management of network traffic on grid nodes while balancing the communication overhead on the routing paths is an also demanding challenge. In this research work, we propose a secure edge-based energy management protocol for a smart grid environment with the support of multi-route management. It strengthens the ability to predict the data forwarding process and improves the management of IoT devices by utilizing a technique of correlation analysis. Moreover, the proposed protocol increases the system’s reliability and achieves security goals by employing lightweight authentication with sink coordination. To demonstrate the superiority of our proposed protocol over the chosen existing work, extensive experiments were performed on various network parameters.