The noise produced by mean flow-turbulence interaction of a circular subsonic jet is investigated theoretically, and expanded in azimuthal constituents of the turbulent pressure fluctuations. It is found that the low-order azimuthal constituents are the most efficient sound sources. On the basis of pressure correlation measurements, the azimuthal constituents are determined in a low Mach number jet. It is found that, in a range of Strouhal numbers between 0·2 and 1, the first three to four azimuthal constituents clearly dominate over the rest of the turbulent source quantity. A strictly axisymmetric ring vortex model for the coherent structure of the turbulence is, however, shown to be inappropriate.