We prove that the Abelian sandpile model on a random binary and binomial tree, as introduced in Redig, Ruszel, and Saada [J. Stat. Phys. 147, 653-677 (2012)], is not critical for all branching probabilities p < 1; by estimating the tail of the annealed survival time of a random walk on the binary tree with randomly placed traps, we obtain some more information about the exponential tail of the avalanche radius. Next we study the sandpile model on Z d with some additional dissipative sites: we provide examples and sufficient conditions for non-criticality; we also make a connection with the parabolic Anderson model. Finally we initiate the study of the sandpile model with both sources and sinks and give a sufficient condition for non-criticality in the presence of a finite number of sources, using a connection with the homogeneous pinning model. Published by AIP Publishing. https://doi