In our present article, we follow our way of developing mean field type control theory in our earlier works [4], by first introducing the Bellman and then master equations, the system of Hamilton-Jacobi-Bellman (HJB) and Fokker-Planck (FP) equations, and then tackling them by looking for the semi-explicit solution for the linear quadratic case, especially with an arbitrary initial distribution; such a problem, being left open for long, has not been specifically dealt with in the earlier literature, such as [3, 13], which only tackled the linear quadratic setting with Gaussian initial distributions. Thanks to the effective mean-field theory, we propose a solution to this long standing problem of the general non-Gaussian case. Besides, our problem considered here can be reduced to the model in [2], which is fundamentally different from our present proposed framework.