Mean stress effect plays an important role in fatigue life prediction, and it is discovered that maximum stress has nonnegligible influence on mean stress effect. Therefore, a modified Walker model is proposed to account for mean stress effect on fatigue life of aeroengine disks, which contains the influence of stress ratio and maximum stress on mean stress effect. Eight sets of fatigue data for standard smooth bars from six kinds of materials commonly used in aeroengine disks as well as two sets of experimental data from simulated specimens of turbine disks were employed to investigate the prediction capability of the proposed model against other candidate mean stress relationships. It is found that Goodman model generates most conservative results, while Morrow model overestimates fatigue life for most cases. SWT model yields similar results to Walker model but with less accuracy. The results of the modified Walker model turn out to be superior to those of any other candidate models for all cases examined, especially for large mean stress ones. Thus, the modified Walker model can be an effective method to predict fatigue lives of aeroengine disks influenced by mean stresses.