2011
DOI: 10.1109/lsp.2010.2090142
|View full text |Cite
|
Sign up to set email alerts
|

Mean Weight Behavior of the NLMS Algorithm for Correlated Gaussian Inputs

Abstract: This letter presents a novel approach for evaluating the mean behavior of the well known normalized least mean squares (NLMS) adaptive algorithm for a circularly correlated Gaussian input. The mean analysis of the NLMS algorithm requires the calculation of some normalized moments of the input. This is done by first expressing these moments in terms of ratios of quadratic forms of spherically symmetric random variables and finding the cumulative density function (CDF) of these variables. The CDF is then used to… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1

Citation Types

0
5
0
2

Year Published

2012
2012
2024
2024

Publication Types

Select...
3
2
2
1

Relationship

1
7

Authors

Journals

citations
Cited by 15 publications
(7 citation statements)
references
References 16 publications
0
5
0
2
Order By: Relevance
“…Note that ||u i || 2 = ||ū i || 2 Λ . Thus, from (11), it can be easily deduced that the entries of the moment matrices Ā, B, and C are completely determined by the expectation 4 Table I contains entries of the form…”
Section: Our Methodologymentioning
confidence: 99%
See 1 more Smart Citation
“…Note that ||u i || 2 = ||ū i || 2 Λ . Thus, from (11), it can be easily deduced that the entries of the moment matrices Ā, B, and C are completely determined by the expectation 4 Table I contains entries of the form…”
Section: Our Methodologymentioning
confidence: 99%
“…Other prior work has attempted to evaluate these moments but the corresponding analyses do not result in closed form performance expressions [1], [3], [4], or rely on strong assumptions. Examples of these assumptions include the separation principle [5], [6], approximations [7], white input [4], [7], [8], specific structure of input regressor's distribution [5], [10], small step size [5], long filters [7], approximate solutions using Abelian integrals [5] and partial evaluation of moments [11].…”
mentioning
confidence: 99%
“…However, the transient behavior of LLA is not as widely studied. Moreover, theoretical transient behavior analysis is extremely important for understanding the algorithm performance under the framework of system identification in practical applications [25,26,27,28,29,30,31,32] and the existing method for analyzing the transient behavior of adaptive filtering algorithms with nonlinearities are derived under Gaussian noise environment. In this paper, the theoretical model to predict the mean weight behavior and the transient EMSE behavior of the LLA is proposed, analyzed, simulated and discussed.…”
Section: Introductionmentioning
confidence: 99%
“…Com respeito à determinação de tais momentos, para o caso de sinal de entrada real, diversas abordagens podem ser encontradas na literatura considerando diferentes tipos de aproximações e, consequentemente, resultando em modelos com diferentes níveis de precisão [4]- [11]. Por outro lado, pouco tem sido desenvolvido em se tratando da modelagem do algoritmo NLMS operando com sinais de entrada complexos, podendo-se citar apenas dois recentes artigos [12], [13]. Entretanto, os resultados descritos em tais trabalhos apresentam certas inconsistências.…”
Section: Introductionunclassified
“…Contudo, devido à presença da integral exponencial generalizada, inerente ao fator de regularização considerado, tal afirmação não é válida. Em [13], os mesmos autores propõem uma solução para o cálculo da matriz de autocorrelação normalizada (requerida na expressão que descreve o comportamento médio do vetor de coeficientes), desconsiderando agora o parâmetro de regularização. Porém, é possível mostrar que essa solução diverge quando utilizada em filtros de ordem superior a dois [14].…”
Section: Introductionunclassified