Vaccines remain a vital public health tool to reduce the burden of COVID-19. COVID-19 vaccines that are more closely matched to circulating SARS-CoV-2 lineages elicit more potent and relevant immune responses that translate to improved real-world vaccine effectiveness. The rise in prevalence of the Omicron JN.1 lineage, and subsequent derivative sublineages such as KP.2 and KP.3, coincided with reduced neutralizing activity and effectiveness of Omicron XBB.1.5-adapted vaccines. Here, we characterized the biophysical and immunologic attributes of BNT162b2 JN.1- and KP.2-adapted mRNA vaccine-encoded spike (S) protein immunogens. Biophysical interrogations of S revealed the structural consequences of hallmark amino acid substitutions and a potential molecular mechanism of immune escape employed by JN.1 and KP.2. The vaccine candidates were evaluated for their immunogenicity when administered as fourth or fifth doses in BNT162b2-experienced mice or as a primary series in naïve mice. In both vaccine-experienced and naïve settings, JN.1- and KP.2-adapted vaccines conferred improved neutralizing responses over the BNT162b2 XBB.1.5 vaccine against a broad panel of emerging JN.1 sublineages, including the predominant KP.3.1.1 and emerging XEC lineages. Antigenic mapping of neutralizing responses indicated greater antigenic overlap of JN.1- and KP.2-adapted vaccine responses with currently circulating sublineages compared to an XBB.1.5-adapted vaccine. CD4+ and CD8+ T cell responses were generally conserved across all three vaccines. Together, the data support the selection of JN.1- or KP.2-adapted vaccines for the 2024-25 COVID-19 vaccine formula.