The differences in the cutting speed are a serious problem along the cutting edge of the drill, in drilling operations. This problem can partly be solved reducing the length of the cutting edge via changing the drill point angle. In addition, in this study, the effect of point angle, feed rate, and cutting speed on drilling is investigated. For identifying the optimum cutting parameters, AISI 1050 steel alloy was selected as the experimental specimen, these specimen were pre-drilled 5 mm in diameter due to eliminating the effect of the chisel edge. In the experiments, the holes were drilled only at a depth of 10 mm in order not to give any harm to the dynamometer while measuring thrust force. For this aim, in drilling process, drills with point angle of 100°, 118°, 136°, 154°, and 172° were selected. In conclusion, the thrust force, the tool wear, and the surface roughness linearly decreased with increasing point angles due to less removal chip area, in per revolve of the tool. However, the thrust force, the tool wear, and the surface roughness were adversely affected at higher feed rates and lower cutting speeds. The hole dimensional accuracy decreased at lower feed rates and cutting speeds but at higher point angles and concurrently at higher feed rates but lower point angles and cutting speeds. However, the hole dimensional accuracy showed more decisiveness at 118° than other point angles, while the highest dimensional accuracy values recorded at 136° point angle, at higher cutting speeds.