An Intelligent Transportation System (ITS) is a vital component of smart cities due to the growing number of vehicles year after year. In the last decade, vehicle detection, as a primary component of ITS, has attracted scientific attention because by knowing vehicle information (i.e., type, size, numbers, location speed, etc.), the ITS parameters can be acquired. This has led to developing and deploying numerous deep learning algorithms for vehicle detection. Single Shot Detector (SSD), Region Convolutional Neural Network (RCNN), and You Only Look Once (YOLO) are three popular deep structures for object detection, including vehicles. This study evaluated these methodologies on nine fully challenging datasets to see their performance in diverse environments. Generally, YOLO versions had the best performance in detecting and localizing vehicles compared to SSD and RCNN. Between YOLO versions (YOLOv8, v7, v6, and v5), YOLOv7 has shown better detection and classification (car, truck, bus) procedures, while slower response in computation time. The YOLO versions have achieved more than 95% accuracy in detection and 90% in Overall Accuracy (OA) for the classification of vehicles, including cars, trucks and buses. The computation time on the CPU processor was between 150 milliseconds (YOLOv8, v6, and v5) and around 800 milliseconds (YOLOv7).