Before global-scale quantum networks become operational, it is important to consider how to evaluate their performance so that they can be suitably built to achieve the desired performance. In this work, we consider three figures of merit for the performance of a quantum network: the average global connection time, the average point-to-point connection time, and the average largest entanglement cluster size. These three quantities are based on the generation of elementary links in a quantum network, which is a crucial initial requirement that must be met before any long-range entanglement distribution can be achieved. We evaluate these figures of merit for a particular class of quantum repeater protocols consisting of repeat-until-success elementary link generation along with entanglement swapping at intermediate nodes in order to achieve long-range entanglement. We obtain lower and upper bounds on these three quantities, which lead to requirements on quantum memory coherence times and other aspects of quantum network implementations. Our bounds are based solely on the inherently probabilistic nature of elementary link generation in quantum networks, and they apply to networks with arbitrary topology.
CONTENTS