Abstract-Current Gigabit-class passive optical networks (PONs) evolve into next-generation PONs, whereby high-speed Gb/s time division multiplexing (TDM) and long-reach wavelength-broadcasting/routing wavelength division multiplexing (WDM) PONs are promising near-term candidates. On the other hand, next-generation wireless local area networks (WLANs) based on frame aggregation techniques will leverage physical-layer enhancements, giving rise to Gigabit-class very high throughput (VHT) WLANs. In this paper, we develop an analytical framework for evaluating the capacity and delay performance of a wide range of routing algorithms in converged fiber-wireless (FiWi) broadband access networks based on different next-generation PONs and a Gigabit-class multiradio multichannel WLAN-mesh front end. Our framework is very flexible and incorporates arbitrary frame size distributions, traffic matrices, optical/wireless propagation delays, data rates, and fiber faults. We verify the accuracy of our probabilistic analysis by means of simulation for the wireless and wireless-optical-wireless operation modes of various FiWi network architectures under peer-to-peer, upstream, uniform, and nonuniform traffic scenarios. The results indicate that our proposed optimized FiWi routing algorithm (OFRA) outperforms minimum (wireless) hop and delay routing in terms of throughput for balanced and unbalanced traffic loads, at the expense of a slightly increased mean delay at small to medium traffic loads.Index Terms-Availability, fiber-wireless (FiWi) access networks, frame aggregation, integrated routing algorithms, next-generation passive optical networks (PONs), very high throughput wireless local area network (VHT WLAN).