Anonymous secret sharing (ASS) is an essential cryptographic concept that facilitates the sharing and reconstruction of secret information while safeguarding the identity of the involved secret receivers, which has broad applications in key management, data backup, and distributed systems. In this study, a novel authenticated quantum anonymous secret sharing (QASS) protocol that emphasizes information privacy and identity anonymity protection is proposed. Employing ‐level multipartite GHZ states as a quantum resource, one‐sided anonymous entanglement (AE) is innovatively established between the dealer and anonymous receivers, enabling the dealer to distribute a random share of secret information. Additionally, by establishing a one‐sided AE between anonymous receivers and restorer, the restorer can securely collect and reconstruct the secret information using quantum teleportation (QT). Rigorous security analysis demonstrates that protocol can resist attacks from active adversaries and potentially dishonest users. Quantum experiments on IBM Qiskit validate the correctness and feasibility of the proposed QASS protocol. This work contributes to the advancement of quantum anonymous communication, addressing the requirements for information privacy and identity anonymity in practical application environments.