2005
DOI: 10.1016/j.jeconom.2004.06.005
|View full text |Cite
|
Sign up to set email alerts
|

Measurement errors and outliers in seasonal unit root testing

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
12
0
2

Year Published

2005
2005
2016
2016

Publication Types

Select...
7
1

Relationship

2
6

Authors

Journals

citations
Cited by 29 publications
(14 citation statements)
references
References 36 publications
0
12
0
2
Order By: Relevance
“…6. Haldrup, Montanés, and Sanso (2005) show that the presence of additive and other types of outliers (as well as measurement errors) has implications for the (moving average) serial correlation structure of the data, so Vogelsangs's (1996) results are consistent with Perron and Ng's (1996) Monte Carlo results on the behavior of the M-tests in the presence of MA errors. 7.…”
mentioning
confidence: 86%
See 1 more Smart Citation
“…6. Haldrup, Montanés, and Sanso (2005) show that the presence of additive and other types of outliers (as well as measurement errors) has implications for the (moving average) serial correlation structure of the data, so Vogelsangs's (1996) results are consistent with Perron and Ng's (1996) Monte Carlo results on the behavior of the M-tests in the presence of MA errors. 7.…”
mentioning
confidence: 86%
“…Franses and Haldrup (1994) and Haldrup, Montanés, and Sanso (2005) show that in these cases with data contamination, unit root inference using standard tests become seriously size affected. Vogelsang (1999) shows that the M-tests effectively solve these problems in terms of test size.…”
Section: The Next Statistic Readsmentioning
confidence: 99%
“…As is the case for the Dickey-Fuller test, the HEGY test may be seriously affected by moving-average terms with roots close to the unit circle [see, e.g., the Monte Carlo analyses of Rodrigues and Osborn (1999) and Ghysels et al (1994)], but also onetime jumps in the series, often denoted structural breaks in the seasonal pattern, and noisy data with outliers may cause problems, as shown by a number of authors such as Ghysels et al (1994Ghysels et al ( , 1996, Harvey and Scott (1994), Canova and Hansen (1995), Breitung and Franses (1998), Franses and Vogelsang (1998), Haldrup et al (2000), Taylor and Smith (2001), Kunst and Rutter (2002), Hassler and Rodrigues (2003), and others.…”
Section: Seasonal Integration and Seasonal Fractional Integrationmentioning
confidence: 99%
“…Quando os dados da série que está sendo avaliada apresentam ruídos, isto é, podem ser representados pelas equações (5.1), (5.2) e (5.3), as distribuições das estatísticas "t" e "F" são aquelas apresentadas na Seção 3.2, para o caso de dados trimestrais e 3.5, para dados mensais, acrescidas de um fator de escala dado por: A fim de estudar as implicações causadas por esses fatores de escala e de localização nas estatísticas dos testes HEGY, Haldrup et al (2005) avaliaram os seguintes casos: séries contendo erros de medida, outliers aditivos e outliers de mudança temporária (ou de inovação).…”
Section: Distribuição Assintótica Das Estatísticas Do Teste Hegy Com unclassified
“…A fim de avaliar os poderes e os tamanhos dos testes HEGY quando outiliers estão presentes, Haldrup et al (2005) O poder e o tamanho dos testes resultantes das simulações de Monte Carlo foram avaliados considerando os métodos de 1 a 4 no caso de outliers aditivos. É esperado que os resultados obtidos sejam similares aos resultados que seriam obtidos para outliers do tipo mudança temporária.…”
Section:  Análise Do Tamanho E Do Poder Do Teste Hegy Com Correção Punclassified