In the context of sustainable urban development, elucidating urban heat island (UHI) dynamics in arid regions is crucial. By thoroughly examining the characteristics of UHI variations and potential driving factors, cities can implement effective strategies to reduce their impacts on the environment and public health. However, the driving factors of a UHI in arid regions remain unclear. This study analyzed seasonal and diurnal variations in a surface UHI (SUHI) and the potential driving factors using Pearson’s correlation analysis and an Optimal Parameters-Based Geographic Detector (OPGD) model in 22 cities in Xinjiang, northwest China. The findings reveal that the average annual surface urban heat island intensity (SUHII) values in Xinjiang’s cities were 1.37 ± 0.86 °C, with the SUHII being most pronounced in summer (2.44 °C), followed by winter (2.15 °C), spring (0.47 °C), and autumn (0.40 °C). Moreover, the annual mean SUHII was stronger at nighttime (1.90 °C) compared to during the daytime (0.84 °C), with variations observed across seasons. The seasonal disparity of SUHII in Xinjiang was more significant during the daytime (3.91 °C) compared to nighttime (0.39 °C), with daytime and nighttime SUHIIs decreasing from summer to winter. The study also highlights that the city size, elevation, vegetation cover, urban form, and socio-economic factors (GDP and population density) emerged as key drivers, with the GDP exerting the strongest influence on SUHIIs in cities across Xinjiang. To mitigate the UHI effects, measures like urban environment enhancement by improving surface conditions, blue–green space development, landscape optimization, and economic strategy adjustments are recommended.