Phase liquid crystal (LC) spatial light modulators (SLM) are actively used in various applications. However, majority of scientific applications require stable phase modulation which might be hard to achieve with commercially available SLM due to its consumer origin. The use of digital voltage addressing scheme leads to phase temporal fluctuations, which results in lower diffraction efficiency and reconstruction quality of displayed diffractive optical elements (DOE). Due to high periodicity of fluctuations it should be possible to use knowledge of these fluctuations during DOE synthesis to minimize negative effect. We synthesized DOE using accurately measured phase fluctuations of phase LC SLM "HoloEye PLUTO VIS" to minimize its negative impact on displayed DOE reconstruction. Synthesis was conducted with versatile direct search with random trajectory (DSRT) method in the following way. Before DOE synthesis begun, two-dimensional dependency of SLM phase shift on addressed signal level and time from frame start was obtained. Then synthesis begins. First, initial phase distribution is created. Second, random trajectory of consecutive processing of all DOE elements is generated. Then iterative process begins. Each DOE element sequentially has its value changed to one that provides better value of objective criterion, e.g. lower deviation of reconstructed image from original one. If current element value provides best objective criterion value then it left unchanged. After all elements are processed, iteration repeats until stagnation is reached. It is demonstrated that application of SLM phase fluctuations knowledge in DOE synthesis with DSRT method leads to noticeable increase of DOE reconstruction quality.Keywords: liquid crystal spatial light modulator, phase temporal fluctuations, direct binary search with random trajectory method, phase diffractive optical elements, image reconstruction.