The interfacial adhesion measurement of a ceramic coating on a metal substrate is studied by three-point bending (3PB) technique. In the measurement, interfacial cracks are induced during the 3PB test, and the interfacial energy release rate is calculated from the released energy per unit crack surface area during crack extension under the fixed displacement conditions. A finite element analysis (FEA) model encompassing the plastic behavior of the metal substrate is developed to simulate the 3PB test and extract the energy data. The inputs to the FEA model include the crack length, the maximum and critical loads corresponding to crack initiation, and the mechanical properties of the coating and substrate. A MoB/CoCr ceramic coating/stainless steel substrate system is investigated by the technique for demonstrating the utility of the technique.