In the case of surfactant EOR, an optimum formulation of surfactant has to be injected in the reservoir. This so-called optimum formulation corresponds to a minimum in the interfacial tension and a maximum in oil recovery and may be obtained with an appropriate balance of the hydrophobic and hydrophilic affinities of the surfactant. Salinity-scan tests are generally used to screen phase behavior of surfactant formulations before conducting time-consuming coreflood tests. The objective of this study was to develop a high-throughput dynamic microfluidic tensiometer, with the aim of studying interfacial phenomena between EOR injected formulations and crude oils and of optimizing chemical EOR processes for pilot or field applications.We have selected a method based on the Rayleigh-Plateau instability and the analysis of the droplets to jetting transition in a coaxial flow of two fluids. In fact, in coaxial flows, the transition between a droplet and a jetting regime depends on the velocities of each phase, the viscosity ratio, the confinement and the interfacial tension (IFT). As the three first parameters are known, the dynamic interfacial tension can be calculated. This microfluidic device has been specifically designed to support high temperatures (up to 150°C), high pressures (up to 150 bars) and is compatible with complex fluids such as crude oils and solutions of surfactants and polymers.The method was first developed and validated on a microfluidic device on model fluids at ambient temperature and atmospheric pressure for IFTs higher than 1 mN/m. It was then successfully applied for the measurement of IFTs over more than four decades. Measurements were also performed with a crude oil and a typical surfactant formulation. The validation of the HP/HT assembly, which has been designed with the aim to work in reservoir conditions, is currently under progress. By using this tensiometer, it would be quite easy to perform in short time numerous salinity scans on real systems in order to get the evolution of IFT and determine the optimal salinity S*.