Abstract-This work is an attempt to predict the solubility of 60 volatile organic compounds (VOCs) in triethylene glycol aimed at thermodynamically testing the suitability of this solvent as an absorbent for the selected organics. The VOC main groups studied were alkanes, alkenes, alkynes, aldehydes, carboxylic acids and alcohols. The Modified UNIFAC Dortmund and Lyngby models were to study the required phase equilibrium as a function of temperature and composition. Triethylene glycol was found to be suitable for the absorption of low molecular weight aldehydes, alcohols and carboxylic acids. Generally, the infinite dilution activity coefficients computed in this study were low (below 100) indicating that the polymeric solvent studied in this work gave favourable phase equilibrium compared to water, the common industrial solvent. The solubility of VOCs was also found to decrease with increase in solute molecular weight. Compared with literature findings, the Dortmund performed better than the Lyngby procedure. However both models failed to accurately predict phase equilibrium behaviour. The authors therefore agree with literature findings that a specialised group interaction needs to be created for this solvent in the UNIFAC models in order to satisfactorily predict activity coefficients for the studied binary interactions.Index Terms-Absorbent, phase equilibria, solubility, volatile organic compounds.