Noncontact, depth-resolved, optical probing of retinal response to visual stimulation with a <10-m spatial resolution, achieved by using functional ultrahigh-resolution optical coherence tomography (fUHROCT), is demonstrated in isolated rabbit retinas. The method takes advantage of the fact that physiological changes in dark-adapted retinas caused by light stimulation can result in local variation of the tissue reflectivity. fUHROCT scans were acquired from isolated retinas synchronously with electrical recordings before, during, and after light stimulation. Pronounced stimulusrelated changes in the retinal reflectivity profile were observed in the inner͞outer segments of the photoreceptor layer and the plexiform layers. Control experiments (e.g., dark adaptation vs. light stimulation), pharmacological inhibition of photoreceptor function, and synaptic transmission to the inner retina confirmed that the origin of the observed optical changes is the altered physiological state of the retina evoked by the light stimulus. We have demonstrated that fUHROCT allows for simultaneous, noninvasive probing of both retinal morphology and function, which could significantly improve the early diagnosis of various ophthalmic pathologies and could lead to better understanding of pathogenesis.electroretinogram ͉ functional optical coherence tomography ͉ inner plexiform layer ͉ photoreceptors ͉ retinal imaging T he vertebrate retina consists of several distinct layers: nuclear layers containing cell bodies can be differentiated from plexiform layers with axons and dendrites forming the neuronal network that preprocesses light-evoked signals before transmission to the brain. Early stages of retinal disorders are often confined to one of these layers and are manifested by both morphological abnormalities and impaired physiological responses. Detection of such pathologies requires high-resolution imaging methods. Various imaging modalities such as fundus photography, ultrasound imaging, and optical coherence tomography (OCT) are clinically used for imaging retinal morphology. OCT is an emerging imaging technique that allows for noncontact, in vivo visualization of biological tissue morphology with a micrometer-scale resolution at imaging depths of 1-2 mm (1-3). Currently, electrophysiological tests such as electroretinography (ERG) (4) and multifocal ERG (5) are used for clinical assessment of retinal function.More then 25 years ago, it was observed that the isolated retina when stimulated with visible light changes the amount of transmitted near-infrared light (NIR) (6, 7). Photoreceptors (PRs) were determined to be the main source of this effect, and in the following years, this method was used for investigation and quantitative evaluation of the activation of the PR G protein transducin and the time course of transduction events (8-10 and reviewed in ref. 11). In the last few years, other physiological processes at the cellular and subcellular level such as membrane depolarization (12), cell swelling (13), and altered metabolism...