Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
<p>The strength of experimentally deformed natural and synthetic quartz is strongly affected by the intracrystalline water content. Water&#8211;related defects weaken quartz by either decreasing the resistance to dislocation motion (Peierls stress) or by enhancing the nucleation of dislocations, during what is commonly referred to as hydrolytic weakening. However, hydrolytic weakening has been observed predominantly in synthetic quartz grains, with water contents higher than 20&#8211;30 wt ppm H<sub>2</sub>O and at high-homologous temperatures, for which the activation of dislocation climb and recovery processes is enhanced.</p><p>In the low-temperature plasticity (LTP) regime, at low-homologous temperatures and high stress conditions, quartz plasticity is mainly controlled by dislocation glide. At these conditions, the possible effect of intracrystalline water on quartz strength is still a matter of debate.</p><p>In order to analyse the effects of intracrystalline water content on the plastic yield and hardness of quartz in the LTP regime, natural samples from recrystallized quartz domains of a granulite-facies migmatitic gneiss, presenting different water contents and microstructures, have been investigated through a series of spherical and Berkovich nanoindentation tests at room conditions. Nanoindentation tests have been integrated with measurements of intracrystalline water contents of the indented grains with secondary ion-mass spectrometry (SIMS), and with electron backscatter diffraction (EBSD) measurements of the crystallographic orientation of the indented grains.</p><p>Water content of indented quartz grains ranges between 2 and 104 wt ppm H<sub>2</sub>O. Samples and related nanoindentation tests were thus classified as either &#8220;dry&#8221; (DQ, for water contents < 20 wt ppm H<sub>2</sub>O) or &#8220;wet&#8221; (WQ, for water content > 20 wt ppm H<sub>2</sub>O). Spherical nanoindentation tests revealed comparable yield stresses (ranging between 3.5 and 8.8 GPa, depending on the crystal orientation) for DQ and WQ grains. In addition, significant strain hardening was observed in both DQ and WQ grains. Berkovich nanoindentation tests also resulted in comparable hardness (ranging from 8.0 to 13.5 GPa) in both DQ and WQ grains. The hardness also increases with indentation depth, which is consistent with the &#8220;size-effect&#8221; on mineral strength during LTP.</p><p>These results suggest that, for the investigated range of water contents, the yield strength and flow stress of quartz in the LTP regime is not affected by the intracrystalline water content of the indented grain. Both the dry and wet quartz experienced significant crystal plastic deformation prior to the nanoindentation tests, as evidenced by the occurrence of undulatory extinction, misorientation bands, subgrains, and recrystallized grains. This pre-indentation strain history may have had a major role in generating the dislocation density, which then controlled the yield stresses during low-temperature plasticity in our experiments. Hence, inherited strain history, crystallographic orientation, and grain size may play a more important role than water in controlling the strength of the continental crust at the brittle&#8211;ductile transition, where LTP is dominant and quartz is the most abundant phase.</p>
<p>The strength of experimentally deformed natural and synthetic quartz is strongly affected by the intracrystalline water content. Water&#8211;related defects weaken quartz by either decreasing the resistance to dislocation motion (Peierls stress) or by enhancing the nucleation of dislocations, during what is commonly referred to as hydrolytic weakening. However, hydrolytic weakening has been observed predominantly in synthetic quartz grains, with water contents higher than 20&#8211;30 wt ppm H<sub>2</sub>O and at high-homologous temperatures, for which the activation of dislocation climb and recovery processes is enhanced.</p><p>In the low-temperature plasticity (LTP) regime, at low-homologous temperatures and high stress conditions, quartz plasticity is mainly controlled by dislocation glide. At these conditions, the possible effect of intracrystalline water on quartz strength is still a matter of debate.</p><p>In order to analyse the effects of intracrystalline water content on the plastic yield and hardness of quartz in the LTP regime, natural samples from recrystallized quartz domains of a granulite-facies migmatitic gneiss, presenting different water contents and microstructures, have been investigated through a series of spherical and Berkovich nanoindentation tests at room conditions. Nanoindentation tests have been integrated with measurements of intracrystalline water contents of the indented grains with secondary ion-mass spectrometry (SIMS), and with electron backscatter diffraction (EBSD) measurements of the crystallographic orientation of the indented grains.</p><p>Water content of indented quartz grains ranges between 2 and 104 wt ppm H<sub>2</sub>O. Samples and related nanoindentation tests were thus classified as either &#8220;dry&#8221; (DQ, for water contents < 20 wt ppm H<sub>2</sub>O) or &#8220;wet&#8221; (WQ, for water content > 20 wt ppm H<sub>2</sub>O). Spherical nanoindentation tests revealed comparable yield stresses (ranging between 3.5 and 8.8 GPa, depending on the crystal orientation) for DQ and WQ grains. In addition, significant strain hardening was observed in both DQ and WQ grains. Berkovich nanoindentation tests also resulted in comparable hardness (ranging from 8.0 to 13.5 GPa) in both DQ and WQ grains. The hardness also increases with indentation depth, which is consistent with the &#8220;size-effect&#8221; on mineral strength during LTP.</p><p>These results suggest that, for the investigated range of water contents, the yield strength and flow stress of quartz in the LTP regime is not affected by the intracrystalline water content of the indented grain. Both the dry and wet quartz experienced significant crystal plastic deformation prior to the nanoindentation tests, as evidenced by the occurrence of undulatory extinction, misorientation bands, subgrains, and recrystallized grains. This pre-indentation strain history may have had a major role in generating the dislocation density, which then controlled the yield stresses during low-temperature plasticity in our experiments. Hence, inherited strain history, crystallographic orientation, and grain size may play a more important role than water in controlling the strength of the continental crust at the brittle&#8211;ductile transition, where LTP is dominant and quartz is the most abundant phase.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.