Using linear polarized light, it is possible in case of ordered structures, such as stretched polymers or single crystals, to determine the orientation of the transition moments of electronic and vibrational transitions. This not only helps to resolve overlapping bands, but also assigning the symmetry species of the transitions and to elucidate the structure. To perform spectral evaluation quantitatively, a sometimes "Linear Dichroism Theory" called approach is very often used. This approach links the relative orientation of the transition moment and polarization direction to the quantity absorbance. This linkage is highly questionable for several reasons. First of all, absorbance is a quantity that is by its definition not compatible with Maxwell's equations. Furthermore, absorbance seems not to be the quantity which is generally compatible with linear dichroism theory. In addition, linear dichroism theory disregards that it is not only the angle between transition moment and polarization direction, but also the angle between sample surface and transition moment, that influences band shape and intensity. Accordingly, the often invoked "magic angle" has never existed and the orientation distribution influences spectra to a much higher degree than if linear dichroism theory would hold strictly. A last point that is completely ignored by linear dichroism theory is the fact that partially oriented or randomly-oriented samples usually consist of ordered domains. It is their size relative to the wavelength of light that can also greatly influence a spectrum. All these findings can help to elucidate orientation to a much higher degree by optical methods than currently thought possible by the users of linear dichroism theory. Hence, it is the goal of this contribution to point out these shortcomings of linear dichroism theory to its users to stimulate efforts to overcome the long-lasting stagnation of this important field.