Energy efficiency is an important issue in industry, especially with the ever-increasing consumption of electrical energy. The power quality and the traceability of metering devices are essential when integrating energy metering systems for energy efficiency. This management requires an understanding of electrical current events such as pulse and transient currents. Current transducers are widely used to measure these electrical current events up to a few megahertz. Their use makes it possible to measure not only the main current flowing through the transducer, but also the bypass current that affects electrical equipment. Calibration of these sensors up to a few megahertz then becomes an essential step. Currently, most calibration methods are limited to 100 kHz frequency for a current of 10 A. This paper presents an improvement of a traceable calibration methodology for current transducers up to 10 A and 1 MHz, thus increasing, by 10 times, the current level for such high frequency applications. This calibration methodology is based on a metrological traceability chain (uninterrupted link to the International System of Units) with respect to a calculable current shunt and is currently the only traceable method for calibrating current transducers at 10 A and up to 1 MHz. The uncertainty obtained for the transimpedance ratio is less than 0.2%, which is considerably reduced with respect to the existing capabilities.