This work presents a method for generating carrier fringes and a nonconventional rotational shear in a triangular cyclic-path interferometer, while simultaneously suppressing the presence of typical lateral and radial shearing. To carry out this method, a 4f optical system is implemented into the cyclic interferometer. The most important contributions of this paper are its demonstration of the linear dependence of the movable mirror displacement with the carrier frequency introduced, and the realization of a nonconventional rotational shearing interferometer. Additionally, we think that one of its possible potential applications is the observation of the angular derivative of parallel projections of a phase object placed at the output plane, generating a great advantage in edge-enhancement optical tomography. In this paper, we develop a theoretical model and show experimental results.