The resin transfer molding (RTM) offers great conditions for mass production of fiber reinforced plastics. In this process, preformed fiber textiles are infiltrated with matrix material (for example: epoxy resin). During the infiltration, the matrix material starts a curing process until the complete consolidation. After the de-molding and a short post-processing step, the final part is ready to use. To reduce the cycle time for the RTM manufacturing, it is necessary to model and predict the flow behavior of the matrix material in a realistic way. An important parameter is the preform permeability, which characterizes the flow resistance of fibers against the flowing matrix material.In this study a new measurement setup is presented, which is able to determine the permeability directly during the manufacturing process, with integrated pressure and temperature sensors. This approach has many advantages against conventional measurement setups, that try to recreate the RTM process with a simple replication. With these replicas, it is only possible to simulate low flow velocities and pressures. Dynamic effects that occur at higher velocities cannot be regarded. Furthermore, the new setup has the advantage that measurement artifacts, like capillarity, have a lower impact. In addition to that, the infiltration can be done with a constant viscosity test fluid as well as with reactive matrix material. Thus, it allows further determination of the time depending viscosity.