The ATLAS CollaborationThis letter describes the observation of the light-by-light scattering process, γγ → γγ, in Pb+Pb collisions at √ s NN = 5.02 TeV. The analysis is conducted using a data sample corresponding to an integrated luminosity of 1.73 nb −1 , collected in November 2018 by the ATLAS experiment at the LHC. Light-by-light scattering candidates are selected in events with two photons produced exclusively, each with transverse energy E γ T > 3 GeV and pseudorapidity |η γ | < 2.4, diphoton invariant mass above 6 GeV, and small diphoton transverse momentum and acoplanarity. After applying all selection criteria, 59 candidate events are observed for a background expectation of 12 ± 3 events. The observed excess of events over the expected background has a significance of 8.2 standard deviations. The measured fiducial cross section is 78 ± 13 (stat.) ± 7 (syst.) ± 3 (lumi.) nb.Light-by-light scattering, γγ → γγ, is a quantum-mechanical process that is forbidden in the classical theory of electrodynamics [1, 2]. In the Standard Model (SM), the γγ → γγ reaction proceeds at one-loop level at order α 4 (where α is the fine-structure constant) via virtual box diagrams involving electrically charged fermions (leptons and quarks) or W ± bosons. However, in various extensions of the SM, extra contributions are possible, making the measurement of γγ → γγ scattering sensitive to new physics. Relevant examples are magnetic monopoles [3], vector-like fermions [4] and axion-like particles [5,6]. The light-by-light cross section is also sensitive to the effect of possible non-SM operators in an effective field theory [7][8][9]. Light-by-light scattering graphs with electron loops also contribute to the anomalous magnetic moment of the electron and muon [10,11].Strong evidence for this process in relativistic heavy-ion (Pb+Pb) collisions at the Large Hadron Collider (LHC) has been reported by the ATLAS [12] and CMS [13] collaborations with observed significances of 4.4 and 4.1 standard deviations, respectively. Exclusive light-by-light scattering can occur in these collisions at impact parameters larger than about twice the radius of the ions, as demonstrated for the first time in Ref. [14]. The strong interaction becomes less significant and the electromagnetic (EM) interaction becomes more important in these ultraperipheral collision (UPC) events. In general, this allows to study processes involving nuclear photoexcitation, photoproduction of hadrons, and two-photon interactions [15,16]. The EM fields produced by the colliding Pb nuclei can be described as a beam of quasi-real photons with a small virtuality of Q 2 < 1/R 2 , where R is the radius of the charge distribution and so Q 2 < 10 −3 GeV 2 [17, 18]. The cross section for the elastic reaction Pb+Pb (γγ) → Pb+Pb γγ can then be calculated by convolving the appropriate photon flux with the elementary cross section for the process γγ → γγ. Since the photon flux associated with each nucleus scales with the square of the number of protons, the cross section is strongl...