SUMMARYThis paper outlines a number of possible research directions in power quality. The introduction of new sources of generation will introduce the need for new research on voltage-magnitude variations, harmonic emission and harmonic resonance. Statistical performance indicators are expected to play an important role in addressing the hosting capacity of the power system for these new sources. The quickly growing amounts of power-quality data call for automatic analysis methods. Advanced signal-processing tools need to be developed and applied to address this challenge. Equipment with an active power-electronic interface generates waveform distortion at higher frequencies than existing equipment. The emission, spread, consequences and mitigation of this distortion require more research emphasis. The growing complexity of the power system calls for remote identification of system events and load transitions. Future DC networks, at different voltage levels, require the research on DC power quality next to AC power quality. Research on methods to describe and analyse time-varying harmonics has applications in a number of the above-mentioned issues. So does the use of hardware-in-the-loop (HIL) and real-time-digital simulation.Existing power quality standards should not form a barrier against future research; instead research should result in improved standards as well as completely new concepts. Examples are: voltage dips in three-phase systems, flicker due to non-incandescent lamps, and voltage variations on the timescale between 1 second and 10 minutes.All together, it is concluded in this paper that sufficient important and interesting research challenges and opportunities remain in the power quality area.