Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Aim of study: Microwave (MW) electro-technological units based on electromagnetic radiation of ultrahigh-frequency can involve thermal MW modification of dielectrics and non-thermal MW modification of polymers. Area of study: Russian Federation. Material and methods: The paper considers a method for making a unit with a hybrid chamber, where thermal and non-thermal MW modifications were carried out simultaneously, and the remaining energy after non-thermal MW modification of polymers was used for heating the dielectric. Main results: A microwave electro-technological unit with a hybrid chamber replaced two separate devices that implemented these MW modifications. It was cheaper and required one MW generator. The unit took up less space than two separate apparatuses, and upgraded the existing microwave dryer to perform thermal MW modification of a lumber pile and non-thermal MW modification of polymer materials. The existing microwave dryer was redeveloped by solving the boundary value problem in electrodynamics and heat and mass transfer. Research highlights: The research presents a microwave electro-technological unit with a hybrid chamber, combining thermal and non-thermal MW modifications of dielectric and polymer materials. As a result of upgrading the existing microwave dryer, it was possible to carry out both thermal and non-thermal MW modifications, namely, microwave drying of timber and microwave drying of up to seven different polymer objects.
Aim of study: Microwave (MW) electro-technological units based on electromagnetic radiation of ultrahigh-frequency can involve thermal MW modification of dielectrics and non-thermal MW modification of polymers. Area of study: Russian Federation. Material and methods: The paper considers a method for making a unit with a hybrid chamber, where thermal and non-thermal MW modifications were carried out simultaneously, and the remaining energy after non-thermal MW modification of polymers was used for heating the dielectric. Main results: A microwave electro-technological unit with a hybrid chamber replaced two separate devices that implemented these MW modifications. It was cheaper and required one MW generator. The unit took up less space than two separate apparatuses, and upgraded the existing microwave dryer to perform thermal MW modification of a lumber pile and non-thermal MW modification of polymer materials. The existing microwave dryer was redeveloped by solving the boundary value problem in electrodynamics and heat and mass transfer. Research highlights: The research presents a microwave electro-technological unit with a hybrid chamber, combining thermal and non-thermal MW modifications of dielectric and polymer materials. As a result of upgrading the existing microwave dryer, it was possible to carry out both thermal and non-thermal MW modifications, namely, microwave drying of timber and microwave drying of up to seven different polymer objects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.