Abstract. The structural integrity of an oil and gas pipeline is increasingly factored into the design of new installations to ensure that operating risks are maintained low. In addition, the life extension of existing assets beyond their original anticipated design life, as a result of the current oil price environment and the need to optimize field development expenditure, is an ongoing challenge. Operators would like to extend pipeline service life, while many of the technologies required for the validation of their ongoing condition are not yet mature enough to provide confidence that this is a viable strategy. One of the issues considered as a key threat to pipeline integrity is corrosion. Therefore understanding the distribution and redistribution of residual stresses within a pipeline affected by corrosion can be of great benefit. A way to monitor in-situ the pipeline residual stress is to use the ultrasonic (UT) technique. The paper aimed to assess and calibrate the US technique on a pipeline mock-up in the presence of a typical local corrosion damage mechanism. Contour, iDHD, ICHD, XRD and ultrasonic measurements were carried out before machining a flaw to produce an accurate FE model of the pipe. The residual stress was then measured during the manufacture of the flaw and was compared with the FE prediction. Ultrasonic measurements were then carried out on the outer surface of the pipe and show a significant increase in the residual stress. The Ultrasonic technique can therefore, be used to monitor the changes in the residual stress which may be caused by corrosion.
IntroductionAcross the globe, 5 metric tons of steel are degenerated every second with the offshore industry. The main fault on pipelines in the North Sea and the Gulf of Mexico is caused by internal corrosion. About 67% of the global pipeline are now older than 20 year which is the minimum design life [1]. Guideline provides guidance to estimate the life of a component in the presence of a flaw, analytically or with finite element analysis [2]. The finite element analysis can be less conservative than the analytical solution and, therefore, increase the in-service time of the pipeline. In order to create a representative FE model of the pipeline, an accurate description of the weld residual stress is important. In this study, the Contour, the Incremental Deep Hole Drilling (DHD), the Incremental Center-Hole Drilling (ICHD) and XRD residual stress measurement techniques were employed and compared on an as-welded section of pipeline.In order to evaluate the life of a pipeline, the corrosion growth needs to be known. Ultrasonic technique is already used to measure the wall thickness of the pipes. This study, however, looks at the measure of the residual stress using ultrasound in an as-welded zone and in a zone with thinner wall thickness. To obtain this results the ultrasonic system needs to be first calibrated. The calibration can be done using a tensile test or using absolute residual stress values. In this study, the ultrasonic method was...