HIGHLIGHTS:o Two multi-channel silicone rubber traps separated by a quartz fibre filter are characterized as a miniature portable denuder o Gas and particle phase polycyclic aromatic hydrocarbons can be separately sampled and analysed o Calculated particle transmission efficiencies were 100 % for particles > 50 nm diameter o Experimental particle transmission efficiencies were 100 % for particles > 200 nm and decreased to < 60 % for particles < 20 nm diameter o Short sampling intervals are possible which provides high temporal resolution for air pollution studies
Analytica Chimica Acta
Novelty StatementTwo multi-channel silicone rubber traps separated by a quartz fibre filter are characterized as a miniature portable denuder, which allows for the separate sampling and analysis of gas and particle phase polycyclic aromatic hydrocarbons. Calculated particle transmission efficiencies were 100 % for particles > 50 nm diameter, whilst experimental particle transmission efficiencies were 100 % for particles > 200 nm and decreased to < 60 % for particles < 20 nm diameter. Short sampling intervals are possible which provides high temporal resolution for air pollution studies. , separated by a quartz fibre filter for particle phase collection. The denuder only requires a small portable personal sampling pump to provide sampling flow rates of ~0.5 L min -1 . Theoretical considerations indicated that the air flow through the denuder was expected to be laminar, and the linear velocity arising from longitudinal diffusion was found to be negligible. The calculated particle transmission efficiency through the denuder was found to be essentially 100 % for particles > 50 nm, whilst the experimental overall efficiency, as determined by CPC and SMPS measurements, was 92 ± 4 %. The size resolved transmission efficiency was < 60 % for particles below 20 nm and 100 % for particles larger than 200 nm. Losses could have been due to diffusion and electrostatic effects. Semi-volatile gaseous analytes are pre-concentrated in the silicone of the trap and may be thermally desorbed using a commercially available desorber, allowing for total transfer and detection of the collected analytes by GC-MS. This enhances detection limits and allows for lower sampling flow rates and shorter sampling times, which are advantageous for studies requiring high temporal resolution.