Structural and electronic properties of hydrogen-bonded infinite chains of hydrogen cyanide and formamide molecules have been investigated by the ab initio crystal orbital method using several, partly highly polarized, atomic basis sets of increasing size at the Hartree-Fock (HF) level and by including electron correlation effects in the second order of Mller-Plesset perturbation theory. The results obtained show that hydrogen bonding in molecular crystals of the type investigated is a highly cooperative phenomenon, both from the structural and energetic points of view.Comparison with clusters of up to four monomers demonstrate how various structural parameters converge toward their limiting values in the infinite system. The results obtained for infinite HCN chains show an excellent agreement with those observed for solid HCN, whereas the infinite formamide chain proves to be a reasonable model for the corresponding liquid phase. 0