Satellite-based datasets of surface turbulent fluxes over the global oceans are being evaluated and improved.O cean surface fluxes of heat, moisture, and momentum observed during field experiments show strong variability on temporal scales that range from the diurnal cycle to the life cycle of storms, and on spatial scales as small as that of an individual convective cloud. High-frequency variability (e.g., diurnal, storm scale) in tropical air-sea fluxes has been hypothesized to influence intraseasonal and interannual variability of the monsoon (e.g., Webster et al. 1998) and the Pacific Ocean warm pool and El Nino (e.g., Sui and Lau 1997;Fasullo and Webster 2000). At high latitudes, large variations in surface fluxes and sea surface temperature are seen in response to storms, which impact the temperature, density, and mixing in the upper ocean, further influencing the atmospheric dynamics and thermodynamics. Storm-scale events have been hypothesized (e.g., Marshall et al. 1998;Nardelli and Salusti 2000) to be associated with ocean convection in the high-latitude water mass formation regions, contributing to deep water formation and the global ocean thermohaline circulation. Ocean mixing induced by tropical cyclones might play an important role in driving the global ocean thermohaline circulation and, thereby,