This article aims to assess the performance of Nord2000, RTN-96, and CNOSSOS-EU, the Nordic and European noise prediction standards, in predicting daily LAeq24h and Lden levels (dBA), by comparing them with measurements gathered over 76 days from the E45 motorway in Helsted, Central Jutland, Denmark. In addition, the article investigates the potential viability of utilizing Confidence-Weighting Average (CWA) for data fusion to enhance noise estimation accuracy. The results showed highly positive Spearman’s correlations (RS), reflecting strong agreements between observed and predicted data, Nord2000 = 0.85–0.98, CNOSSOS-EU = 0.79–0.92 and RTN-96 = 0.86–0.91. Model differences, RMSE = 0.4–3.3 dBA (Nord2000), 1.4 = 2.8 dBA (CNOSSOS) and 1.3–4.2 dBA (RTN-96), were mainly due to underlying model parametrization and uncertainties in model inputs. Overall, Nord2000 outperformed CNOSSOS and RTN-96 in reproducing observed noise levels. Moreover, CNOSSOS agreed well with the measured data and exhibited a high potential for noise mapping and health assessments. Likewise, the CWA is found to be a promising, forward-looking data fusion approach to improve noise estimates’ accuracy. More research is required to further evaluate the models in greater detail over a larger geographical area and across varied temporal scales (e.g., hourly, yearly).