SUMMARYIn this paper we present a general strategy for screening discrete variations in organic synthesis. The strategy is based upon principal properties, i.e. principal component characterization of the constituents defining the reaction system. The first step is to select subsets of test items from each class of constituents defining the reaction space, i.e. substrates, reagents, solvents, catalysts, etc., so that the selected items from each class cover the properties considered. The second step is to construct a candidate matrix which contains all possible combinations of the items in the subsets. This matrix is a full multilevel factorial design. The third step is to assign a tentative model for the screening experiment and to construct the corresponding candidate model matrix. The fourth step is to select experiments to yield an experimental design that spans the variable space efficiently and that also gives good estimates of the model parameters. We present an algorithm that uses singular value decomposition to select experiments. The proposed strategy is then illustrated with an example of the Fischer indole synthesis.